Rationally Injective Modules for Algebraic Linear Groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rationally Injective Modules for Algebraic Linear Groups1

1. Let G be an algebraic linear group over a field F. If G acts by linear automorphisms on some vector space M over F we say that M is a rational G-module if it is the sum of finite-dimensional G-stable subspaces V such that the representation of G on each F is a rational representation of G. The rational G-module M is said to be rationally injective if, whenever U is a rational G-module and 0 ...

متن کامل

On Injective Modules for Infinitesimal Algebraic Groups, I

Let G be a connected, semisimple algebraic group defined over an algebraically closed field k of characteristic p > 0. We assume that G is defined and split over the prime field k0. In general, for any positive integer r, and any affine fc-group scheme H defined over k0, the r-th infinitesimal subgroup scheme Hr of H is defined to be the (scheme-theoretic) kernel of the r-th power of the Froben...

متن کامل

Factoring Tilting Modules for Algebraic Groups

Let G be a semisimple, simply-connected algebraic group over an algebraically closed field of characteristic p > 0. We observe that the tensor product of the Steinberg module with a minuscule module is always indecomposable tilting. Although quite easy to prove, this fact does not seem to have been observed before. It has the following consequence: If p > 2h − 2 and a given tilting module has h...

متن کامل

Injective Linear Cellular Automata and Sofic Groups

Let V be a finite-dimensional vector space over a field K and let G be a sofic group. We show that every injective linear cellular automaton τ : V G → V G is surjective. As an application, we obtain a new proof of the stable finiteness of group rings of sofic groups, a result previously established by G. Elek and A. Szabó using different methods.

متن کامل

Generalizations of principally quasi-injective modules and quasiprincipally injective modules

LetR be a ring andM a rightR-module with S= End(MR). The moduleM is called almost principally quasi-injective (or APQ-injective for short) if, for any m∈M, there exists an S-submodule Xm of M such that lMrR(m) = Sm ⊕ Xm. The module M is called almost quasiprincipally injective (or AQP-injective for short) if, for any s∈ S, there exists a left ideal Xs of S such that lS(ker(s)) = Ss ⊕ Xs. In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1963

ISSN: 0002-9939

DOI: 10.2307/2035020